Electrophilic Addition and Substitution Reactions of Bis((trifluoromethy1)sulfonyl)amide and Its N-Chloro Derivative

Ashwani Vij, Yuan Y, Zheng, Robert L. Kirchmeier, and Jean'ne M. Shreeve'

Department of Chemistry, University of Idaho, Moscow, Idaho **83843** *Received March* **2.** *1994'*

Lithium bis((trifluoromethyl)sulfonyl)amide (1) reacts with $S_2O_6F_2$ to form $\text{FSO}_2\text{ON}(\text{SO}_2\text{CF}_3)_2$ (2). Reaction of **2** with KF results in the cleavage of the S-N bond with the concomitant formation of CF₃SO₂F. The ease of electrophilic addition reactions of $HN(SO_2CF_3)_2$ (3) with $CH_2=CHF$, $CH_2=CF_2$, and $CHF=CF_2$ depends upon the hydrogen content of the olefin. Addition occurs in a unidirectional fashion according to Markovnikov's rule to form CH₃CHFN(SO₂CF₃)₂ (4), CH₃CF₂N(SO₂CF₃)₂ (5), and CH₂FCF₂N(SO₂CF₃)₂ (6), respectively. Cleavage of the CF2-N bond in **5** by reaction with CsF leads to the formation of CH3CF3 in about **12%** yield. The major product formed is CF₃SO₂F. The reactivity of fluorine atoms of the difluoromethylene group of 5 is shown by its reaction with (CH_3) ₃SiN(CH₃)₂ in the presence of CsF under mild conditions where CF₃SO₂F, (CH₃)₃SiF, and $CH_3C[N(CH_3)_2]=NSO_2CF_3(7)$ are formed. AgN(SO₂CF₃)₂ is formed by the reaction of Ag₂CO₃ with an aqueous solution of **3** and undergoes metathetical reactions readily with compounds containing active halogen atoms to introduce the N(SO₂CF₃)₂ group. Strong Lewis acids such as $ZN(SO_2CF_3)_2$ [$Z = R_3Sn$, $R = CH_3 (8)$, $n-C_4H_9$ (9), and C₆H₅ (10); Z = (CH₃)₃Si (11)] can thus be conveniently prepared. The vinyltin(IV) compound (CH₃)₃- $SnCF=CF_2$ (12) is synthesized by the reaction between $(CH_3)_3$ SnCl and $CF_2=CFBr$ in hexaethylphosphorus triamide and benzonitrile. Multinuclear NMR studies of the trialkylstannyl/silyl derivatives suggest a quasitetrahedral structure around the central silicon or tin atom as reflected by their very low 29Si **(55.9** ppm) and 1I9Sn **(-250** ppm) NMR chemical shifts and 1J(119Sn-13C) and 2J(119Sn-1H) coupling constants. Compounds *8,9,* and **11** can also be isolated by reaction of ClN(S02CF3)2 **(13)** with the respective alkylmetal chlorides in a noncoordinating solvent. However, 13 fails to add across the perfluorovinyl group in $CF_2=CFSn(CH_3)$ ₃ (12) and forms $CF_2=CFCl$ Department of Chemisty, University of Idaho, Moscow, Idaho 83843

Received March 2, 1994 \bullet

Lithium bis((trifluoromethy))sulfory))amide (1) resets with S₂O₆F₂ to form FSO₂ON(SO_CCF₂), (2). Reaction of

Lithiu

and 8 instead. Reactions of 13 with a variety of per/polyfluoroolefins, such as $CF_2=CFX$ $[X = H, F, CF_2CF_2-$

 CF_2CF_2N - and $CF_2CF_2OCF_2CF_2N$ -], $CH_2=CXY$ $[X = H; Y = F, CF_3; X = Y = F]$ result in uni- or bidirectional addition to give **14-23.** Insertion of ClCN into the N-Cl bond of **13** results in the formation of an azaalkene, $CCl_2=NN(SO_2CF_3)_2$ (24). Reaction of CFCl₂S(O)Cl with 13 forms CFCl₂S(O)N(SO₂CF₃)₂ (25) with concomitant evolution of chlorine.

Introduction

The chemistry of nitrogen acids, especially bis(fluoro/(perfluoroalkyl)sulfonyl)amides, has attracted considerable attention during the last decade. The interest in the chemistry of these compounds arises from the unusually high electronegativity of the **(fluoro/(perfluoroalkyl)sulfonyl)amide** group.1-3 The increase in acidity of the residual proton bonded to the nitrogen atom bearing two **fluoro/perfluoroalkylsulfonyl** groups results in their high gas phase⁴ and Brønsted solution acidities.^{2,5-8} For example, the electronegativity of the $\cdot N(SO_2X)_2$ group (X = F or CF_3 ; $\chi \approx 3.6$) is comparable to that of $-SO_2CF_3$ but is slightly greater than that of chlorine.² Taking advantage of the high electronegativity of the $-SO_2CF_3$ group^{9,10} leads to tremendous applications in organic synthesis.¹¹⁻¹³ As a consequence of the electronegativity effects, compounds containing the $N(SO₂X)₂$ $(X = F \text{ or } CF_3)$ ligands show some very interesting properties

- ***Abstract published in** *Advance ACS Abstracts,* **June 15, 1994.**
- **(1) Cavanaugh, J. R.; Bailey, P. B.** *J. Chem. Phys.* **1961, 1099.**
-
- **(2) Ruff, J. K.** *Inorg. Chem.* **1965,4, 1446. (3) Thrasher, J. S.; Neilson, J. B.; Bott, S. G.; McClure, D. J.; Morris,** *S.* **(4) DcsMarteau, D. D.; Taft, R. W. Referenced in Hu, L.-Q.; DesMarteau, A.; Atwood, J. L.** *Inorg. Chem.* **1988, 27, 570.**
- **(5) Meusadorffer, J. N.; Niederprum, H.** *Chem. Ztg.* **1972, 96, 582. D. D.** *Inorg. Chem.* **1993, 32, 5008, ref 17b.**
-
- **(6) Foropoulos, J., Jr.; DesMarteau, D. D.** *Inorg. Chem.* **1984, 23, 3720.**
- **(7) Singh, S.; DcaMarteau, D. D.** *Inorg. Chem.* **1990,29, 2982.**
- **(8) Hu, L.-Q.; DesMarteau, D. D.** *Inorg. Chem.* **1993, 32, 5007. (9) Gramstad, T.; Hazeldine, R. N.** *J. Chem. Soc.* **1957, 4069.**
-
- **(10) Bordwell, F. G.; Vanier, N. R.; Mathews, W. S.; Henderickson, J. B.; Skipper, P. L.** *J. Am. Chem. Soc.* **1975,97, 7160.**
- **(11) Senning, A.** *Chem. Rev.* **1965, 65,** *385.*
- **(12) Hendrickson, J. B.; Sternback, D. D.; Bair, K. W.** *Acc. Chem. Res.* **1977,** *IO,* **306.**
- **(13) Howells, R. D.; McCown, J. D.** *Chem. Reu.* **1977, 77, 69.**

with perhaps the most important being the formation of Xe-N bonds in some noble gas derivatives.¹⁴⁻¹⁷ electrochemical applications, $18-20$ and, in the case of $FN(SO_2CF_3)_2$, use as a novel selective fluorinating reagent.²¹ A recent study shows that trimethylsilyl bis(fluorosulfony1)amide is a better catalyst than trimethylsilyl triflate for allylation or aldol type reactions of acetals with trimethylsilyl nucleophiles.²² Some novel graphite-like solid state structures of their metal salts are reported.23 Recently, some new perhaloalkanesulfonyl halides which are precursors to some new nitrogen acids were synthesized.8 Although the chemistry of bis(fluorosulfony1)amide is developed considerably,24

- **(14) LeBlond, R. D.; DesMarteau, D. D.** *J. Chem. SOC., Chem. Commun.* **1974.** *555.*
- **DesMarteau, D. D.; LeBlond, R. D.; Hossain,** *S.* **F.; Nothe, D.** *J. Am.* (15) *Chem. Soc.* **1981,** *103,* **7734.**
- **Swayer, J. F.; Schrobilgen, G.; Sutherland,** *S.* **J.** *Inorg. Chem.* **1982,21, 4064.**
- **Foropoulos, J.,** Jr.; **DesMarteau, D. D.** *J. Am. Chem. SOC.* **1982, 104, 4260.**
- **Razaq, M.; Razaq, A.; Yeager, E.; DesMarteau, D. D.; Singh,** *S. J. Appl. Electrochem.* **1987, 17, 1057.**
- Razaq, M.; Razaq, A.; Yeager, E.; DesMarteau, D. D.; Singh, S. J.
Electrochem. Soc. 1989, 136, 385.
Appleby, A. J.; Velev, O. A.; LeHelloca, J.-G.; Parthasarthy, A.;
Srinivasan, A.; DesMarteau, D. D.; Gillette, M. S.; Ghos
- *Electrochem. SOC.* **1993, 140, 109.**
- **(21) Singh,** *S.;* **DesMarteau D. D.; Zuberi,** *S. S.;* **Witz, M.; Huang, H.-N.** *J. Am. Chem. SOC.* **1987, 109, 7194.**
- **(22) Trehan, A.; Vij, A.; Walia, M.; Kaur, G.; Verma, R. D.; Trehan,** *S. Tetrahedron Lett.* **1993, 34, 7335.**
- **(23) DesMarteau, D. D.; Zuberi, S.** *S.;* **Pennington, W. T.; Randolph; B. B.** *Eur. J. Solid State Inorg. Chem.* **1992, 29, 777. (24) For example: Vij, A.; Singh, S.; Verma, R. D.** *Bull. SOC. Chim. France*
- **1989, 331 and references therein. Vij, A,; Kaur, G., Singh,** *S.;* **Verma, R. D.** *Indian J. Chem.* **1993,** *23A,* **232 and references therein. Verma, R. D.; Vij, A,; Kirchmeier, R. L.; Shreeve, J. M. In a review on nitrogen acids, manuscript under preparation.**

0020-1669/94/ 1333-3281\$04.50/0

0 **1994** American Chemical Society

the chemistry of the corresponding **((perfluoroalky1)sulfonyl)** amides receives much less attention. Here, we describe the electrophilic addition and substitution reactions of bis((triflu0 romethy1)sulfonyl)amide and its N-chloro derivative. The reactions and properties of some of these derivatives are explored.

Results and Discussion

Bis((perfluoroalky1)sulfonyl)amides were prepared by employing a multistep synthetic route.⁵⁻⁷ The availability of lithium **bis((trifluoromethy1)sulfonyl)amide (1)** as a gift from the 3M Co. provided an easy precursor for the preparation of HN(SO₂- $CF_3)_2$. The inertness of LiN(SO₂CF₃)₂ is reflected by lack of reaction with active halogen-containing compounds such as $R_fN=CF_2$, CF₃COCl, CH₃COF, CH₃I, etc. where a variety of reaction conditions are used. On the other hand, the silver salt of one of the nitrogen acids, $CF_3SO_2N(Ag)SO_2C_4F_9$, reacts instantaneously with CH₃I and C₂H₅I.⁷ However, LiN(SO₂- CF_3)₂ is very reactive toward strong electrophiles. With $S_2O_6F_2$, **1** forms the **bis((trifluoromethy1)sulfonyl)amide** fluorosulfate **2** in good yield. The presence of two strong bands in the infrared spectrum at 1500 and 1473 cm⁻¹ are assigned to $\nu_{as}(\text{SO}_2)$ of the $-SO_3F$ and $-N(SO_2CF_3)_2$ groups, respectively. Under vacuum $HN(SO_2CF_3)_2$ sublimes when 1 is heated with \sim 98% H₂SO₄.

Electrophilic addition reactions of $HN(SO_2CF_3)_2$ are successfully accomplished using model polyfluoroolefins. These reactions obey Markovnikov's rule. This parallels some olefinic addition reactions of HX $(X = F^{25} \text{ or } N(SO_2F)_2^{26})$. In the present study it is found that the temperature required to carry out the addition is a function of the fluorine content of the olefin. In the case of vinyl fluoride, the reaction requires initiation by warming to \sim 45 °C and then continuing at 25 °C for \sim 12 h. Heating the reaction for a longer time results in darkening of the reaction mixture and polymerization of the alkene. A higher reaction temperature and longer time are required in the case of $CH_2=CF_2 (80 °C$ and 36 h) and CHF= $CF_2 (\sim 120 °C$ and 72 h) while tetrafluoroethylene does not react even at \sim 150 °C for 5 days. It is also observed that the stability of the products increases with increasing fluorine content.

The ¹⁹F NMR spectrum of these adducts show long range $(5J)$ couplings between the fluorine atoms of the $-CF_2-N<$ and $N(SO_2 CF₃$)₂ groups. The size of *J* increases with the increase in fluorine content of the adduct, i.e., $4.8, 6.8$, and 12.3 Hz for CH₃CHFN- $(SO_2CF_3)_2$ **(4), CH₃CF₂N(SO₂CF₃)₂ (5), and CH₂FCF₂N(SO₂-**CF3)2 **(6),** respectively. The high-resolution 19F NMR spectrum of **6** shows a 41-line **(triplet-triplet-septet)** pattern for the CHzF fluorine atom arising from couplings to geminal protons, vicinal fluorine atoms, and long-range interactions with the $N(SO_2CF_3)_2$ fluorine atoms. This spectral pattern is also supported by theoretical simulation.

Attempted cleavage of the CF_2-N bond in $CH_3CF_2N(SO_2-$ CF3)2 **(5)** using CsF as a nucleophile results in the formation of only \sim 12% of the desired product, CH₃CF₃. The major product, $CF₃SO₂F$, results from attack at sulfur with concomitant N-S bond cleavage. In the presence of a polar solvent, e.g., $CH₃CN$, CF3S02F is formed as the only volatile product. Reaction of **5** with (CH_3) ₃SiN(CH₃)₂ in the presence of a catalytic amount of CsF, results in the formation of an azaalkene, $CH₃C(N (CH₃)₂$)=NSO₂CF₃ (7), with accompanying formation of $(CH₃)₃SiF$ and $CF₃SO₂F$. The mechanism for the formation of **7** is shown in Scheme 1.

The reaction of silver carbonate with aqueous $HN(SO_2CF_3)_2$ results in the formation of $AgN(SO_2CF_3)_2$. This is a useful transfer reagent for the introduction of the N(SO₂CF₃)₂ group **Scheme 1**

into various organometallic moieties.

$$
R_{3}MCI + AgN(SO_{2}CF_{3})_{2} \rightarrow R_{3}MN(SO_{2}CF_{3})_{2} + AgCl
$$

\n
$$
R_{3}MN(SO_{2}CF_{3})_{2} + AgCl
$$

\n
$$
M = Sn; R = CH_{3}(8), C_{4}H_{9}(9), C_{6}H_{5}(10)
$$

 $M = Si; R = CH₃(11)$

Recently it is reported that trialkylsilyl²² and trialkylstannyl²⁷ **bis(fluorosulfony1)amides** have unusually electron deficient metal centers. This observation is exploited for the trimethylsilyl derivative in organic synthesis,²² and it is found that this reagent is more efficient than trimethylsilyl triflate. The ${}^{1}H$ and ${}^{19}F$ NMR spectral data of $(CH_3)_3$ SiN(SO₂CF₃)₂, prepared by the methods in this study agree with those reported.6 Additionally, the 29Si NMR spectrum shows a peak at **6** 55.9 which is among the lowest reported to date. This suggests that $(CH_3)_3$ SiN(SO₂- $CF₃$ ₂ might be a better candidate as a reagent for organic synthesis in comparison to its $N(SO_2F)_2$ counterpart, especially where stability is concerned since the latter undergoes decomposition at 25 °C after a few days.

The trialkyltin(1V) derivatives also show highly deshielded tin nuclei as reflected by the low ¹¹⁹Sn chemical shifts of \sim 250 ppm. Although a large quantity of triorganotin(1V) compounds appear in the literature, there is only one unambiguous report of the existence of the (CH_3) ₃Sn⁺ cation in highly acidic solution below -30 °C.²⁸ Two reports have appeared recently on stable cationic tricoordinate tin species in solution under ambient conditions.^{29,30}
The appearance of $v_{\text{aa}}\text{SO}_2$ at $\sim 1380 \text{ cm}^{-1}$, low ¹¹⁹Sn chemical shift, and the position of the ¹⁹F resonance \sim -79 ppm in R₃- $SnN(SO_2CF_3)_2$ are indicative of the ionic nature of these compounds. In order to demonstrate this highly polar property, their solvation behavior was studied by H , ^{13}C , ^{19}F , and ^{119}Sn NMR spectroscopy (Tables 1 and 2). The series of solvents chosen for the trimethyl- and tri-n-butyltin bis((trifluoromethyl)sulfony1)amides is based on increasing solvent donicities.

⁽²⁵⁾ **Hudlicky, M.** *Chemistry* **of** *OrganicFluorine Compounds,* **2nd** *ed.;* **John (26) Wiley and Co.: New York, 1976; p 36.**
 (26) Colburn, C. B.; Hill, W. E.; Verma, R. D. *J. Fluorine Chem.* **1981**, *17*,

^{15.}

⁽²⁷⁾ Vij, A.; Singh, S.; Verma, R. D. *J. Fluorine Chem.* **1992, 58,43.** *(28)* **Birchall, T.; Mannivannan, V.** *J. Chem.* **Soc.,** *Dalton Trans.* **1985,2671.**

⁽²⁹⁾ Lambert, J. B.; Kuhlmann, B. *J. Chem.* **Soc.,** *Chem. Commun.* **1992, 931.**

⁽³⁰⁾ Edlund, U.; Anhadi, M.; Johnels, D. *J. Orgonomet. Chem.* **1993,456, 57.**

Table 1. ¹H, ¹⁹F, and ¹¹⁹Sn NMR Spectral Data for R₃SnX (R = CH₃, C₄H₉; X = N(SO₂CF₃)₂)

compound	solvent ^a	$\delta(H)$		$2J(Sn-1H)$, Hz			δ ⁽¹¹⁹ Sn)	$\Delta(^{119}Sn)^c$
			117Sn	119Sn	θ (CH ₃ -Sn-CH ₃) ^b (eq 1), deg	$\delta(^{19}F)$		
$(CH_3)_3SnN(SO_2CF_3)_2$ (8)		0.84	61.6	64.2	115	-78.5	240.2	10.8
	CH ₂ Cl ₂	0.81	61.8	64.4	115.2	-78.8	251	
	CH ₃ CN	0.82	67.1	70.2	120.1	-78.9	44.6	206.4
	$(CD_3)_2SO$	0.48	67.4^{d}	69.0^{d}	119.0	-78.6	37.4	213.6
	Py	0.23	66.7 ^d	68.5^{d}	118.4	-78.6	-12.3	263.3
	HMPA	0.49	67.4	68.6	118.6	-78.8	-30.8	281.1
$(C_4H_9)_3SnN(SO_2CF_3)_2$ (9)		0.89 (t, 3H) $1.2 - 2.0$ (m, 6H)				-78.5	242.3	9.4
	CH ₂ Cl ₂	0.88 (t, 3H) $1.1 - 2.0$ (m, 6H)				-78.7	251.7	
	CH ₃ CN	0.92 (t, 3H) $1.0 - 1.8$ (m, 6H)				-79.5	46.4	205.3
	$(CD_3)_2SO$	0.89 (t, 3H) $1.0 - 1.8$ (m, 6H)				-78.8	13.2	238.5
	Py	0.17 (t, 3H) $0.5 - 1.0$ (m, 6H)				-78.8	-19.4	271.1
	HMPA	0.42 (t, 3H) $0.4 - 1.2$ (m, 6H)				-78.9	-39.8	291.5

 $a_1 =$ Saturated solution (R = CH₃)/neat liquid; Py = pyridine; HMPA = hexamethylphosphoramide. **b** Reference 35. $\epsilon \delta^{(119} \text{Sn})$ in DCM - $\delta^{(119} \text{Sn})$ in other solvent. *d* Calculated from center of unresolved ¹¹⁹Sn, ¹¹⁷Sn satellites ($|J_{\text{obsel}}| \times 1.023$).³⁶

Table 2. ¹³C NMR Spectral Data for R₃SnX (R = CH₃, C₄H₉; X = N(SO₂CF₃)₂)

		$\delta(^{13}C)(R)$			$J(^{119}Sn-^{13}C)$							
						$n = 1$						
compound	solvent ^a	C ₁	C ₂	C ₃	C ₄	117S _n	119Sn	$n=2$	$n = 3$	δ (CF ₃)	$^1J_{CF}$, Hz	θ (CH ₃ -Sn-CH ₃), ^b deg
$(CH_3)_3$ SnN $(SO_2CF_3)_2$ (8)		2.1				394.1	412.6			118.7	320.4	113
	CH ₂ Cl ₂	0.8				395.2	414.8			118.1	319.8	113
	CH ₃ CN	-1.7				467.6	489.5			119.4	320.7	119.7
	$(CD_3)_2SO$	0.7				499.0	512.2			120.0	321.7	121.6
	P _Y	-2.2				498.5	510.0			199.9	322.1	121.5
	HMPA	1.1				527.7	551.8			119.2	321.7	125.2
$(C_4H_9)SnN(SO_2CF_3)_2$ (9)		21.9	27.1	26.6	13.1	330.8	347.0	28.1	78.1	118.9	320.7	
	CH ₂ Cl ₂	22.1	27.2	26.5	13.1	331.2	349.6	28.2	78.0	119.1	320.9	
	CH ₃ CN	18.1	27.0	25.8	12.3	405.2	423.7	29.5	73.6	119.4	321.1	
	$(CD_3)_2SO$	19.3	27.3	26.2	13.1	445.1	465.2	30.9	75.9	119.1	322.0	
	Py	17.3	27.2	25.9	12.3	440.3	461.6	28.7	82.5	119.8	322.1	
	HMPA	19.5	27.5	26.6	12.9	471.0	493.2	28.2	87.8	119.7	321.6	

 a_1 = Saturated solution (R = CH₃)/neat liquid; Py = pyridine; HMPA = hexamethylphosphoramide. **Reference 35.**

The ¹¹⁹Sn NMR spectra of the parent compounds **8-11** (Table 1) show only a single broad peak due to quadrupolar broadening by nitrogen. Unlike the ¹¹⁹Sn NMR data reported earlier for cationic trialkyltin(1V) compounds,29 in **no** case is an additional peak observed due to hydrolysis. The position of the peaks in highly concentrated trimethyl and neat tri-n-butyltin derivatives $(\sim 240 \text{ ppm})$ shows a downfield shift of $\sim 10 \text{ ppm}$ upon dilution with dichloromethane which may be ascribed to the breakdown of intermolecular association upon solvation. These chemical shift values fall well below the range suggested for tetracoordinated organotin compounds, $31,32$ i.e., $+200$ to -60 ppm measured with respect to tetramethyltin. The chemical shifts of compounds lying below **250** ppm, therefore, reflect the tricoordinate nature of these organotin species as observed previously.^{27,29,30} In CH₂- Cl_2 , the ¹¹⁹Sn chemical shift of $(CH_3)_3$ SnN $(SO_2CF_3)_2$ is about 6 ppm lower than for $(CH_3)_3SnClO_4$ ²⁹ but for the corresponding $(C_4H_9)_3$ Sn derivatives, this difference is \sim 30 ppm.³⁰ The ¹¹⁹Sn chemical shift can, therefore, be used to estimate the relative coordinating ability of the anions to the trialkyltin(1V) moiety to be in the following order:³³

 \approx BF₄ < Cl. When δ ⁽¹¹⁹Sn) of (CH_3) ₃SnN(SO₂CF₃)₂ is compared $B(C_6F_5)_3H \le N(SO_2F)_2 \approx N(SO_2CF_3)_2 \le CIO_4 \le SO_3CF_3$ to $\delta(^{119}Sn)$ of $(CH_3)_3SnNEt_2$, the former resonates about 200 ppm lower than the latter.³⁴ This difference in chemical shift may be explained **on** the basis of the electronegativity difference of the two ligands and the low availability of the nitrogen lone pair for Sn-N $p\pi$ -d π bonding in **8** (i.e. the electron pair is highly delocalized over the $O_2-S-N-S-O_2 \pi$ -framework).

When the "9Sn NMR spectrum of **8** or *9* is recorded in donor solvents, there is a drastic upfield shift of the signal (Figure 1). The magnitude of this shift from the resonance value in dichloromethane, Δ (19Sn), lies in the range 200 to 300 ppm (Table 1) and is a function of the donicity of the solvent, which is: hexamethylphosphoramide $(HMPA)$ > pyridine (Py) > dimethyl sulfoxide (DMSO- d_6) > acetonitrile (AN) \gg dichloromethane (DCM).

The **19FNMRspectraofcompounds8-10in** avarietyofsolvents lie in the **-78.5** to **-79.5** ppm region which is characteristic of ionic N(SO₂CF₃)₂ derivatives.⁶ The change in δ ⁽¹⁹F) upon solvolysis in donor solvents is much less than 1 ppm whereas, in the case of corresponding $N(SO_2F)_2$ derivatives, this change is about 3 ppm. This suggests that the fluorine atoms of CF₃ groups are less sensitive to the change in electron density around nitrogen when compared to that of the -SF group in $N(SO_2F)_2$.

The IH and 13C NMR spectral data (Table 1 and **2)** are also quite informative for the structural investigation of organotin compounds. The 2J(119Sn-1H) values for **8** in concentrated (saturated solution in a 1:1 mixture of $CDCl₃$ and $CH₂Cl₂$) and

⁽³¹⁾ Nádvorník, M.; Holeček, J.; Handlíř, K.; Lyčka, A. *J. Organomet. Chem.* **1984,** *275,* 43.

⁽³²⁾ Hole&k, J.; NQdvornik, M.;Handlii, K.; LyEka, **A.** *J. Orgunomet. Chem.* **1986,** *315,* 299.

⁽³³⁾ The 119 Sn chemical shift of $(CH_3)_3$ SnOSO₂CF₃ is found to be 162 ppm in CH₂Cl₂. For ¹¹⁹Sn chemical shifts of other compounds, see ref 27 and 29-32.

⁽³⁴⁾ Newman, W. H. *The Organic Chemistry of Tin;* Interscience: London, 1970; p 226.

b ("%)

Figure 1. Effect of solvent nucleophilicity on the ¹¹⁹Sn chemical shift of (CH₃)3SnN(SO₂CF₃)₂. Py = pyridine, and HMPA = hexamethylphosphoramide.

CH2C12 solutions are 64.2 and 64.4 Hz, respectively. **In** donor solvents, this value increases to \sim 70 Hz due to an increase in the s-orbital contribution to the tin bonding orbitals. The geometry around the tin nucleus can be determined by estimating the average $CH₃-Sn-CH₃$ angles by employing Lockhart's equation, 35, 36 i.e.,

$$
\theta = 0.0161 \, |^{2} J(^{119} \text{Sn}^{-1} \text{H})|^{2} - 1.32 \, |^{2} J(^{119} \text{Sn}^{-1} \text{H})| + 133.4 \quad (1)
$$

The angles estimated by substituting the $2J(119Sn-1H)$ values into eq 1 are \sim 115^o as the neat compounds or in solvents of low nucleophilicity which indicates a highly flattened tetrahedral geometry at tin possibly caused by elongation of the Sn-N bond. In donor solvents, these angles increase to $\sim 120^\circ$, suggesting a planar (CH₃)₃Sn arrangement due to orbital rehybridization to form a trigonal bipyramidal (TBP) structure with two donor molecules occupying the axial positions. The ${}^{1}J({}^{119}Sn-{}^{13}C)$ couplings obtained from ¹³C NMR provide a better estimation of the environment around tin. If the Fermi contact term is regarded as a major contributor, the 1J coupling constant is very sensitive to the s-electron character in the Sn-C bond. For compounds **8-10** the *lJ* values are 414, **347,** and 688 **Hz,** respectively, whereas an increase in these values by **100-150** Hz is observed in donor solvents. The $CH_3-Sn-CH_3$ angle can also be correlated to the ${}^{1}J(119Sn-13C)$ values using³⁵

$$
|{}^{1}J(119Sn-13C)| = 11.4\theta - 875
$$
 (2)

The angles calculated for 8 are 113°, while in donor solvents these lie \sim 120 \degree complementing the earlier results from eq 1. The proposed trans-TBP geometry (donor molecules situated along the axial positions) for solvated trialkyltin cations is supported from conductance and Mössbauer data.²⁷

The mass spectral data for the organotin derivatives show a 10-line pattern for the $(M⁺ - R)$ peaks as the highest fragment with the exception of $(CH_3)_3\text{SnN}(\text{SO}_2\text{CF}_3)_2$ for which a weak M^+ + 1 peak is observed. In the case of the butyl derivative, the appearance of a peak (120 Sn isotope) at m/e 233 is assigned to $C_4H_9Sn(H)CH_2CH_2CH=CH_2$ which is probably formed by the loss of butane *via* a hydride transfer mechanism.

Reaction of **1** with CIF results in the formation of ClN(SO2- $CF₃$ ₂ (13) contaminated with traces of $CF₃SO₂Cl$. This method provides an alternate route for the preparation of the N-chloro derivative which was first prepared by the reaction of HN(SO₂- CF_3 , with CIF and avoids manipulation of HF during the workup of the product.6 Addition of **13** to fluoroolefins is not as straightforward as with 3. Additions with **13** are accomplished either at room temperature or at 65-70 °C. With olefins such as CHF= CH_2 , CHF= CF_2 , CH₂= CF_2 , and CF₂= CF_2 and ClCN, the addition reaction is regioselective. However, in the either at room temperature or at 65-70 °C. With olefins such
as CHF=CH₂, CHF=CF₂, CH₂=CF₂, and CF₂=CF₂ and
ClCN, the addition reaction is regioselective. However, in the
case of CF₃CH=CH₂, CF₂CF₂CF₂C $4^{T} - K$) peaks as the nighest fragme
 H_3)₃SnN(SO₂CF₃)₂ for which a wea

In the case of the butyl derivative, tl

Sn isotope) at m/e 233 is assigned
 $=CH_2$ which is probably formed by tl

ide transfer mechani $CF₂OCF₂CF₂NCF=CF₂$, the addition takes place bidirectionally as two isomers are easily identified by NMR. A recent study has shown that the addition of some electrophilic reagents to

⁽³⁵⁾ Lockhart, T. **P.;** Manders, W. *F. Imrg. Chem.* **1985,25,892.** *(36)* Lockhart, T. **P.;** Manden, W. F.; Zuckerman, J. J. *J. Am. Chem. Soc.* **1985,107,4546.**

perfluorovinylamines takes place bidirectionally.^{37,38} The addition reactions of **13** probably take place via a three-centered carbocationic intermediate controlled by electronic factors. **A** radical mechanism can be ruled out due to the instability of the $N(SO₂$ - $CF₃$)₂ radical.

The partial positive nature of chlorine in **13** is revealed by the electrophilic substitution of the chlorine atom in trialkylsilyl/ stannyl chlorides. The products obtained from these reactions, after removing the solvent (CCl₄ or CFCl₃) and Cl₂, are identified as 8, 9, and 11 which are also obtained by the silver salt metathesis discussed above. These reactions are analogous to the previously reported reaction between $CIN(SO_2F)_2$ and $(CH_3)_3SnCl³⁹$ However, reaction of 13 with $(C_6H_5)_3$ SnCl gives a complicated mixture of products probably due to attack of the chloronium ion **on** the aromatic ring. The addition of **13** to a slight excess of $(CH₃)₃SnCF=CF₂ results in electrophilic substitution rather than$ addition to yield compound 8 and CF₂=CFCl quantitatively. Similarly, the S-Cl bond in $CFCl_2S(O)Cl$ is substituted by the $N(SO_2CF_3)$ ₂ group with concomitant evolution of chlorine. The ¹⁹FNMR spectrum of CFCl₂S(O)N(SO₂CF₃)₂ contains a doublet assigned to the fluorine atoms in $N(SO_2CF_3)_2$ while a septet is seen for the CFC12 fluorine atom arising from long range coupling $(^{6}J_{FF} = 7.5$ Hz).

Conclusion

This paper describes the electrophilic addition and substitution reactions of $HN(SO_2CF_3)_2$ and its N-chloro derivative. Multinuclear NMR studies reveal that the organosilyl/stannyl bis- **((trifluoromethy1)sulfonyl)amides** constitute a class of compounds with a highly electron deficient metal center which makes these derivatives strong candidates as reagents for organic synthesis. The chemical shifts of the organotin derivatives are among the lowest observed to date and are found at \sim 251 ppm in CH₂Cl₂. Due to the weak nucleophilicity of the $N(SO_2CF_3)_2$ group, the fluoroalkyl **bis((trifluoromethy1)sulfonyl)amide** derivatives obtained by electrophilic addition of $HN(SO_2CF_3)_2$ or $CIN(SO_2 CF₃$)₂ to fluoroalkenes have good potential for transfer of the fluoroalkyl group, an area of study that is currently being persued in our laboratories. or desired in the CDC and the CH₃
or desired in the CH₃
or definition of HN(SO₂CF₃)₂ and its N-chloro do
MR studies reveal that the organos
methyl)sulfonyl)amides constitute a cl
or deficient metal center w
stro

Experimental Section

Lithium bis((trifluoromethyl)sulfonyl)amide, CF₂CF₂CF₂CF₂N-

 $CF=CF_2$, $CF_2CF_2OCF_2CF_2NCF=CF_2$, and $S_2O_6F_2$ were received as gifts from Dr. Fred Behr (3M Co.), Dr. T. Abe (Government Industrial Research Institute, Nagoya, Japan), and Prof. F. Aubke (UBC, Canada), respectively, and used as received. CIF (Ozark Mahoning Atochem North America), $CH_2=CHF$ and $CH_2=CF_2$ (Japan Halon), $CF_2=CHF$ (PCR Inc.), H_2SO_4 (J. T. Baker Inc.), R_3SnCl (R = CH₃, C₄H₉, and C₆H₅), and $(CH₃)₃SiCl (Aldrich)$ were purchased and used as received. $CFCl₂$ -SOCI is prepared as reported in the literature.⁴⁰ Volatile reactants and products are handled in a conventional Pyrex vacuum line equipped with a Heise Bourdon tube and Televac thermocouple guages. Standard *PVT* techniquesor direct weighing are used toquantitate reactants and products. Infrared spectra are recorded on a Perkin-Elmer 1710 FT-IR spectrometer with a 10-cm glass cell equipped with AgCl windows (volatile products) or as a neat film between AgCl disks (nonvolatile liquids/solids). ¹H, ¹³C, ¹⁹F, ²⁹Si, and ¹¹⁹Sn NMR spectra are obtained on a Bruker AC300 FT-NMR spectrometer operating at 300.31 (¹H), 75.469 (¹³C), 282.41 (^{19}F), and 111.92 (^{119}Sn) MHz, respectively, using a \sim 1-mm sealed capillary filled with DMSO- d_6 for locking in the case of nondeuterated solvents. After the ¹H, ¹³C and ¹⁹F NMR spectra of a compound are recorded, another sealed capillary filled with neat tributyltin chloride is inserted into the 5 mm NMR tube and the ¹¹⁹Sn NMR recorded. Chemical shifts are referenced to $(CH_3)_4Si$ (¹H, ²⁹Si), CFCl₃ (¹⁹F) and

neat (C_4H_9) ₃SnCl (¹¹⁹Sn, 144 ppm³¹). The ¹³C NMR chemical shifts are determined relative to the solvent signal, i.e. dimethyl- d_6 sulfoxide (39.6 ppm) , CDCl₃ (77.0 ppm), HMPA (36.0 ppm). Chemical shifts for the tributyltin(1V) derivatives are assigned on the basis of the known relation $1J(119Sn-13C) \gg 3J(119Sn-13C) \ge 2J(119Sn-13C)$.⁴¹ Mass spectra are obtained on a Varian VG 7070 HS mass spectrometer. Peaks reported correspond to ³⁵Cl and ¹²⁰Sn isotopes. Elemental analyses are performed by Beller Microanalytisches Laboratorium, Göttingen, Germany. Since the reactants and products are highly moisture sensitive, all reactions and sample preparation are performed with the strict exclusion of moisture.

Reaction of LiN(SO₂CF₃)₂ with S₂O₆F₂. LiN(SO₂CF₃)₂ 1 (2.3 mmol) is placed in a 100-mL Pyrex reactor fitted with a Teflon stem valve and evacuated at -196 °C for several hours. $S_2O_6F_2$ (3 mmol) is then transferred under vacuum. The reaction mixture is slowly warmed to 25 ^oC and stirred for about 2 h. The products are separated by trap-to-trap distillation.

Properties of $FSO_2ON(SO_2CF_3)_2$ **(2).** Compound 2 is isolated as a colorless liquid in 87% yield in a trap cooled to -30 °C having passed through a trap at -10° C. Spectral data are as follows. IR (gas) (cm⁻¹): 1500 vs, 1473 **s,** 1248 vs, 1132 **s,** 1029 m, 879 **s,** 851 vs, 797 m, 755 vs. $[m/e$ (species) intensity]: 310 (M⁺ – CF₃) 1.7; 296 (ON(SO₂CF₃)₂⁺) I9F NMR [FAS020N(S02CF3B)2]: 6 47.8 (A, **s),** -68.9 (B, **s).** MS CI 2.7; 282 (HN(SO₂CF₃)₂⁺ + 1) 53.1; 212 (CF₃SO₂NSO₂H⁺) 2.6; 150 $(CF₂SO₂NH₂⁺ + 1)$ 10; 133 $(CF₃SO₂⁺)$ 28.1; 69 $(CF₃⁺)$ 100.

Preparation of HN(SO₂CF₃)₂. Into a 50-mL vacuum sublimator is added \sim 5 g of anhydrous 1 followed by 25 mL of H₂SO₄ (\sim 98%). The solution is heated with stirring in an oil bath at 70 $^{\circ}$ C and HN(SO₂CF₃)₂ collects in the cooler parts of the sublimator (80-93% yield) as a white crystalline solid. It is resublimed twice under dynamic vacuum at 60-65 °C and characterized by its melting point and spectral data.⁶

Insertion reactions of 3 with fluoroolefins. Preparation of CH₃CHFN- $(SO_2CF_3)_2$ (4), $CH_3CF_2N(SO_2CF_3)_2$ (5), and $CH_2FCF_2N(SO_2CF_3)_2$ (6). In a drybox, $HN(SO_2CF_3)_2$ (4.8-6 mmol) is loaded into a 75-mL Pyrex reaction vessel fitted with a Kontes Teflon needle valve. The reaction vessel is then evacuated at -196 °C, and \sim 10% excess of the required fluoroolefin [CH₂=CHF (A), CH₂=CF₂ (B), or CHF=CF₂ (C)] is introduced. The reaction mixture is warmed to $25 °C$, heated to $45-50$ °C for about 1 h, and allowed to remain at 25 °C overnight (A), heated at \sim 80 °C for about 36 h (B), or heated at \sim 120 °C for 72 h (C).

Properties of CH₃CHFN(SO₂CF₃)₂ (4). Compound 4 is isolated as a colorless liquid in 34% yield in a trap cooled to -20 °C following trapto-trap distillation of the viscous brownish reaction mixture which leaves behind a brownish-black unidentified polymeric residue. Spectral data obtained for **4** are as follows. IR (neat liquid/AgCl) (cm-I): 1446 vs, 1426 **s,** 1387 **ms,** 1348 **ms,** 1230 vs, br, 1156 **s,** 1127 vs, br, 1079 vs, 956 **s,** 904 ms, 875 **s,** 797 w, 776 w, 745 w, 687 ms, 618 vs, 594 **s,** 584 **s,** 530 m, 506 ms, 486 m, 463 m. NMR $[CH₃^ACH^BF^CN(SO₂CF₃^D)₂]$: ¹H, δ 6.33 (B, dq), 1.92 (A, dd); I9F, **6** -72.9 (D, d), -129.9 (C, br **s).** *JAB* = 6.2 Hz, J_{AC} = 13.8 Hz, J_{BC} = 44.4 Hz, J_{CD} = 4.8 Hz. MS CI [*m/e* (species) intensity]: $328(M^{+}+1)1.03308(M^{+}-F)4.13296$ (CH₃N(SO₂- $CF_3)_2^+$ + 1) 7.1; 282 (HN(SO₂CF₃)₂⁺ + 1) 89.7; 244 (M⁺ – CH₂CF₃) 16.5 ; 212 (N(SO₂)SO₂CF₃++ 1) 2.9; 173 (FCN(SO₂)₂+) 16.8; 133 (CF₃-*SO2+)* 10.9; 69 (CF3') 100.

Properties of CH₃CF₂N(SO₂CF₃)₂ (5). Compound 5 is isolated as a highly moisture sensitive, colorless liquid in 82% yield in a trap cooled to -20 °C, having passed a trap at 0 °C. Spectral data obtained for 5 are as follows. IR (neat liquid/AgCl) $(cm⁻¹)$: 1456 vs, 1430 vs, 1400 **s,** 1333 m, 1225 vs, vbr, 1180 sh, 1124vs, br, 1065 w, 975 **s,** 960 **s,** 914 ms, 884 **s,** 836 m, 771 w, 746 vw, 686 **m,** 619 vs, 600 **s,** 573 vs, 515 vs. NMR [CH₃^ACF₂^BN(SO₂CF₃^C)₂]: ¹H, δ 2.23 (A, t); ¹⁹F, δ -59.6 (B, br **s**), -71.1 (C, t). $J_{AB} = 16.7$ Hz, $J_{BC} = 6.8$ Hz. MS CI [m/e (species) intensity]: 346 (M⁺ + 1) 1.2; 311 (M⁺ - F - CH₃) 2.9; 296 (CH₃N(SO₂- CF_3)₂⁺ + 1) 6.5; 282 (HN(SO₂CF₃)₂⁺ + 1) 95.3; 262 (M⁺ – CH₃CF₃) **+1)2.6;213(M+-CF3S02+1)1.3;194(M+-F-CFpS02+** 1)9.1; $150 (H_2NSO_2CF_3$ ⁺ + 1) 7.9; 147 (NSO₂CF₃⁺) 4.7; 133 (CF₃SO₂⁺) 8.8; 69 (CF₃⁺) 63.1; 65 (CH₃CF₂⁺) 100. Anal. Calcd for C₄H₃F₈NO₄S₂: C, 13.9; H, 0.90; N, 4.06; F, 44.1. Found: C, 13.79; H, 0.87; N, 4.06; F, 43.2.

Properties of CH₂FCF₂N(SO₂CF₃)₂ (6). Compound 6 is isolated as a colorless liquid in 68% yield in a trap cooled to-20 "C after trap-to-trap distillation of the reaction mixture. Spectral data obtained for *6* are as follows. IR (neat liquid/AgCl) (cm-I): 1456 vs, 1436 **s,** 1410 sh, 1332 **w,1296sh,1284ms,1233vs,vbr,1177m,1122vs,br,1051m,975ms,**

⁽³⁷⁾ Vij, A; Kirchmeier, R. L.;Shreeve, J. M.; Abe, **T.;** Fukaya, H.; Hayashi, (38) Vij,A,Kirchmeier,R. L.;Shreeve, J. **M.;Abe,T.;Fukaya,H.;Hayashi,** E.; Hayakawa, Y.; **Ono,** T. *Inorg. Chem.* **1993,32,** 5011.

⁽³⁹⁾ Ruff, J. K. Inorg. *Chem.* **1966,** *5,* 732. E.; Hayakawa, Y.; **Ono,** T. *Inorg. Chem.* **1994, 33,** 628.

⁽⁴⁰⁾ Zhang, Y. F.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. *Chem.* **1992,31,** 492.

⁽⁴¹⁾ Lyčka, A.; Šnobl, D.; Handlíř, K.; Holeček, J.; Nádvorník, M. Collect. *Czech. Chem. Commun.* **1981,** *46,* 1383.

876 **s,** 787 w, 771 w, 684 m, 645 **s,** 611 **s,** 585 **s,** 574 **s,** 514 **s.** NMR -77.6 (C, br s), -231.3 (B, 41 lines, ttsept). $J_{AB} = 45.4$ Hz, $J_{AC} = 11.3$ $Hz, J_{BC} = 18.6 \text{ Hz}, J_{BD} = 3.8 \text{ Hz}, J_{CD} = 12.3 \text{ Hz}. \text{ MS CI } [m/e \text{ (species)}]$ intensity]: 364 (M⁺ + 1) 12.8; 296 (M⁺ - CF₃ + 2) 3.1; 282 (HN(SO₂- CF_3)₂⁺ + 1) 75.1; 226 (M⁺ - C₂F₆ + 1) 2.6; 212 (M⁺ - F - CF₃SO₂ + 1) 15.9; 150 (H₂NSO₂CF₃+ + 1) 9.4; 133 (CF₃SO₂+) 15.8; 83 (CH₂-[CH₂AF^BCF₂CN(SO₂CF₃^D)₂]: ¹H, *δ* 4.89 (A, dt); ¹⁹F, *δ* -70.4 (D, dt), FCF_2^+) 35.1; 69 (CF_3^+) 100. Anal. Calcd for $C_4H_2F_9NO_4S_2$: C, 13.2; H, 0.55; F, 47.1. Found: C, 12.67; H, 0.71; F, 45.9.

Reaction of 5 with CsF. Dry CsF (1.5 mmol) is loaded into a modified reaction vessel fitted with a Kontes Teflon stopcock and a B-10 joint side arm fitted with a rubber septum and evacuated for several hours, first at 25 "C and then at -196 "C. Compound **5** (1.2 mmol) is injected into the reaction vessel under a positive dry nitrogen atmosphere. After evacuating the vessel, the mixture is allowed to warm slowly to 25 "C. Following trap-to-trap distillation, a mixture of CF_3SO_2F and CF_3CH_3 in a 6.5:1 ratio is isolated in a trap held at -196 °C. When acetonitrile is used as a solvent in the above reaction, CF_3SO_2F is formed exclusively. The spectral data for $CF_3SO_2F^{42}$ and $CF_3CH_3^{43}$ are consistent with those reported.

Reaction of 5 with $(CH_3)_{2}$ **SiN(CH₃)₂.** A catalytic amount of CsF $(-0.05$ mmol) is loaded into the modified reaction vessel described above and evacuated at -196 "C. Compound **5** (1.5 mmol) is syringed into the reaction vessel *uia* the septum. The solution is degassed for about 30 min followed by introduction of $(CH_3)_3SiN(CH_3)_2 (1.5$ mmol) under vacuum. The reaction mixture is stirred and slowly warmed to 25 °C overnight. Upon trap-to-trap distillation, a mixture of CF_3SO_2F and $(CH_3)_3S$ iF is obtained in traps at -80 and -1 **10** "C, leaving behind a yellowish solid. This solid is extracted into diethyl ether and identified as CH3C- $(N(CH_3)_2)$ =NSO₂CF₃ (7).

Properties of $CH_3C(N(CH_3)_2)$ **=NSO₂CF₃ (7).** The spectral data obtained for **7** are as follows. IR (neat solid/KBr) (cm-I): 2952 mw, br, 1592 vs ($v_{\text{C-N}}$), 1489 vs, 1425 vs, 1403 vs, 1316 vs, 1268 vs, br, 1191 vs,br, 113Ovs, 1019s,981 **ms,855vs,790~,76Oms,727s,642vs,592 s,** 580 **s,** 531 ms, 482 m, 428 w. NMR [CF3AS02N=C(CH3B)- (A, **s).** MS CI *[m/e* (species) intensity]: 219 (M+ + 1) 100; 149 (H2- N(CH3C)CH3D]: 'H, 8 3.11 (C, **S),** 3.07 (D, **s),** 2.4 (B, **s);** I9F, 6 -79.7 NSO₂CF₃⁺) 22.9; 133 (CF₃SO₂⁺) 17.7; 85 (M⁺ - CF₃SO₂) 12.1; 69 (CF_3^+) 7.2.

Preparation of AgN(SO₂CF₃)₂. A slight excess of Ag₂CO₃ (\sim 12 mmol) is added, with stirring, to a solution of $HN(SO_2CF_3)_2$ (20 mmol) in 40 mL of distilled water in a 100-mL beaker wrapped with aluminum foil. The reaction mixture is heated to \sim 65 °C, filtered, and concentrated to about 10 mL. A white solid is isolated upon removing excess water under vacuum and is dried at \sim 80 °C for 6 h. This compound is dissolved in about 50 mL of dry diethyl ether, stirred for \sim 2 h, and filtered to remove solid impurities, if any. Removal of the solvent under vacuum gives AgN(SO₂CF₃)₂ as a fine white powder in 79% yield. Spectral data of $AgN(SO_2CF_3)_2$ are as follows. IR (neat solid/AgCl) (cm⁻¹): 1338 vs, 1213 vs, 1140 vs, 1058 **s,** 972 **s,** 798 **s,** 771 m, 742 **s,** 647 vs, 587 **s,** 579 vs, 567 **s,** 516 vs. NMR [AgN(SO2CF3)2]: I9F, 8 -78.7 **(s).** Anal. Calcd for $C_2F_6S_2O_4Ag$: Ag, 27.97. Found: Ag, 28.21.

Reaction of AgN(SO₂CF₃)₂ with R₃MCI (M = Sn, R = CH₃, n-C₄H₉, and C_6H_5 ; $M = Si$, $R = CH_3$). In a typical preparation, a solution of R_3MCl (\sim 4 mmol) in CH₂Cl₂ is transferred using standard techniques into a Schlenk flask protected with A1 foil and containing a slight excess (-4.2 mmol) of AgN(SO₂CF₃)₂ in the same solvent. The mixture is stirred for 10 h. Filtration under a positive nitrogen atmosphere followed by solvent removal under vacuum gives the desired trialkylsilyl/stannyl

bis((trifluoromethyl)sulfonyl)amides in essentially quantitative yields.
Properties of (CH₃)SnN(SO₂CF₃)₂ (8). This compound is isolated as a highly moisture sensitive, low melting (37-38 °C), off-white solid. The spectral data obtained for compound **8** are as follows. IR (neat/ AgCI) (cm-I): 1378 vs br, 1337 sh, 1225 sh, 1202 vs, 1137 vs, 1061 vs, 876 ms, 797 ms, 781 sh, 745 m, 646 ms, 608 vs, 575 **s,** 515 **s.** MS CI [m/e (species) intensity] (tin-containing fragments assigned to ¹²⁰Sn iso-+ 1) 3.9; 282 (HN(SO₂CF₃)₂⁺ + 1) 25.6; 185 ((CH₃)₂SnOF⁺) 10.33; 169 ((CH₃)₂SnF⁺) 38.4; 165 ((CH₃)₃Sn⁺) 100; 139 (SnF⁺) 2.9; 135 (CH_3Sn^+) 9.8; 133 (CF₃SO₂⁺) 8.9; 120 (Sn⁺) 2.4; 69 (CF₃⁺) 64.1. tope): 446 (M⁺ + 1) 0.4; 430 (M⁺ – (CH₃)) 7.0; 296 (CH₃N(SO₂CF₃)₂⁺

Properties of (C_4H_9) ^{SnN(SO₂CF₃)₂ (9). This compound is isolated} as a highly moisture sensitive, evil smelling, colorless viscous liquid which is not distillable under vacuum. The spectral data obtained are as follows. IR (neat/AgCl) (cm⁻¹): 2959 s, 2935 s, 2863 ms, 1467 m, 1418 w, 1380 m, 1347 vs br, 1323 sh, 1267 ms, 1232 sh, 1206 vs, 1129 vs, 1116 vs, 1079 sh, 1060 vs, 963 w, 881 m, 850 vw, 799 m, 768 mw, 744 vs, 706 ms, 680 ms, 652 ms, 615 vs, 571 ms, 509 ms, 456 vw. MS **E1** *[m/e* (species) intensity] (tin-containing fragments assigned to 120 Sn isotope): 514 (M⁺ $-C_4H_9$) 100; 400 (SnN(SO₂CF₃)₂⁺) 17.3; 291 ((C₄H₉)₃Sn⁺) 12.8; 269 $(C_4H_9)_2$ SnOF⁺) 3.61; 253 ($(C_4H_9)_2$ SnF⁺) 37.3; 233 (C_4H_9 Sn(H)CH₂- $CH_2CH=CH_2+$) 4.6; 177 (C_4H_9Sn+) 56.47; 139 (SnF⁺) 29.3; 133 (CF₃-*SOz+)* 6.1; 121 (SnH+) 24.5; 69 (CF3+) 90.

Properties of (C_6H_5) ₂SnN(SO₂CF₃)₂ (10). This compound is isolated as a highly moisture sensitive, grayish-white solid. The spectral data obtained for compound **10** are as follows. IR (AgCl/Nujol bands deleted) (cm-I): 1377 **s,** 1348 sh, 1224 sh, 1203 vs, 1133 **s,** 1060 **s,** 998 mw, 796 w, 732 m, 697 mw, 608 m, 575 mw, 515 w. NMR $[(C_6H_5)_3$ ^ASnN- $(SO_2CF_3^B):$ ¹H, δ 7.65, 7.35 (A, m in ratio 2:3); ¹³C, δ 137.7 (ipso, C_i), 136.1 (ortho, C_o), 130.6 (para, C_p), 128.8 (meta, C_m), 118.5 (B, quart), $^{1}J(1^{19}Sn-1^{3}C_{i}) = 688$ Hz, $^{1}J(1^{17}Sn-1^{3}C_{i}) = 659.1$ Hz, $^{2}J(1^{19}Sn-C_{o}) =$ 51.4; ${}^{3}J(119_{\text{S}}-113_{\text{C}}) = 72.3 \text{ Hz}, {}^{4}J(119_{\text{S}}-113_{\text{C}}) = 15.3 \text{ Hz}, J(19_{\text{F}}-13_{\text{C}})$ $= 321.4 \text{ Hz}$; ${}^{19}F$, $\delta - 78.02$; ${}^{119}Sn$, $\delta - 79.23$. **MSCI** [*m/e*(species) intensity] (tin containing fragments assigned to 120 Sn isotope): 554 (M⁺ - C₆H₅) 54.6; 400 $(SnN(SO_2CF_3)_2^+)$ 1.4; 351 $(C_6H_5)_3Sn^+$) 100; 309 $(C_6H_5)_2$ -SnOF⁺) 12.5; 293 (C₆H₅)₂SnF⁺) 23.9; 282 (HN(SO₂CF₃)₂⁺ + 1) 6.4; $(SnF⁺)$ 6.3; 133 (CF₃SO₂⁺) 3.9; 120 (Sn⁺) 11.2; 69 (CF₃⁺) 58.7. Anal. Calcd for $C_{20}H_{15}F_9NO_4S_2Sn$: C, 38.12; H, 2.4; F, 18.1. Found: C, 38.52; H, 2.68; F, 17.8. 274 ($(C_6H_5)_2$ Sn⁺) 2.7; 197 (C_6H_5 Sn⁺)14.7; 154 ($(C_6H_5)_2$ ⁺) 35.7; 139

Properties of $(CH_3)_{3}$ SiN(SO₂CF₃)₂ (11). Spectral data of $(CH_3)_{3}$ - $\text{SiN}(\text{SO}_2 \text{CF}_3)_2$ agree with the literature.⁶ The ¹³C and ²⁹Si NMR data are not reported and are as follows. I3C NMR: *8* -0.08 (CH3, **s),** 11 8.7 (CF₃, q). $J_{CF} = 320.5$ Hz. ²⁹Si NMR: δ 55.9.

Preparation of $CF_2=CFSn(CH_3)$ **(12). The preparation of perfluo**rovinyltin(IV) compounds by employing Grignard synthesis is reported⁴⁴ but a different synthetic approach is described here. Trimethyltin(1V) chloride (5 mmol) is loaded in a 50-mL reaction flask fitted with a Kontes Teflon stopcock followed by injection of hexaethylphosphorus triamide (5.1 mmol) and \sim 15 mL of benzonitrile. The reaction mixture is degassed at-196 °C, and CF₂=CFBr (\sim 6.5 mmol) is then condensed via vacuum. After the mixture is warmed to 25 °C, the reactants are stirred for \sim 12 h followed by trap-to-trap distillation. $CF_2=CFSn(CH_3)$ ₃ is obtained as a colorless liquid in 89% yield in a trap held at -100 "C, having passed a trap at -40 °C. Spectral data obtained are as follows: IR (cm^{-1}) (gas): 3058 vw, 2997 mw, 2931 m, 1719 vs *(u~),* 1280 **s,** 1210 mw, 1121 ms, 1008 ms, 782 m, 725 mw, 540 m, 513 sh. NMR [C(F)AFB= $CF^CSn^D(CH₃^E)₃$: ¹H, δ 0.23 (E, s). ²J(¹¹⁷Sn-¹H) = 57.1 Hz, ²J- $($ ¹¹⁹Sn-¹H) = 59.6 Hz; ¹¹⁹Sn, δ - 30.5 (D, d); ¹⁹F, δ -88.2 (B, dd), -122.9 $^{2}J(117\text{Sn}^{-19}\text{F}_{\text{C}}) = 159.7 \text{ Hz}, \frac{^{2}J(119\text{Sn}^{-19}\text{F}_{\text{C}})}{^{19}J(119\text{Sn}^{-19}\text{F}_{\text{D}})}$ $= 11.4$ Hz, $3J(^{119}Sn-^{19}F_A) = 23.9$ Hz. (A, dd) , -194.4 (C, dd). ${}^{3}J_{BC} = 116$ Hz, ${}^{3}J_{AC} = 25.9$ Hz, ${}^{2}J_{AB} = 75$ Hz,

Reaction of LiN(mF3)2 witb CIF. The preparation of ClN(S02- $CF₃$)₂ by reacting HN(SO₂CF₃)₂ with CIF is described earlier.⁶ An alternative preparation of CIN(SO₂CF₃)₂ (13) from LiN(SO₂CF₃)₂ is described here. LiN(SO₂CF₃)₂ (2.3 mmol) is loaded into a passivated 25-mL stainless steel vessel and evacuated at -196 °C for several hours. ClF (6.3 mmol) is transferred into the reaction bomb *via* vacuum. The vessel is then allowed to warm slowly to 25 \degree C in an empty liquid nitrogen dewar over a period of 17 h. The reaction mixture is then fractionated by trap-to-trap distillation. Compound **13** is isolated as a pale yellowish liquid along with traces of CF_3SO_2Cl in a trap held at -40 °C having passed the trap at -10 °C. Repeated trap-to-trap distillations gives CIN- $(SO_2CF_3)_2$ as a colorless liquid in 61% yield. The spectral data are in agreement to that reported earlier.⁶

Reaction of 13 with CF₂-CFSn(CH₃)₃. In a reaction vessel equipped with a Kontes Teflon stopcock, 2.1 mmol of **13** was transferred followed by 2.12 mmol of $CF_2=CFSn(CH_3)$, at -196 °C under vacuum. The reaction mixture is allowed to warm to 25 °C over a period of \sim 12 h with stirring. Separation of the reaction products by trap-to-trap distillation results in the isolation of CF_2 = CFC l essentially quantitatively in a trap at -196 °C, having passed a trap at -100 °C. A quantitative yield of

⁽⁴²⁾ The ¹⁹F NMR chemical shifts of an authentic sample of CF₃SO₂F supplied by the 3M Co. are at δ 38.3 (SF, q) and -72.4 (CF₃, d), $J_{FF} = 18.15$ **HZ.**

⁽⁴³⁾ *Proton ond Fluorine Nuclear MogneticResonance Spectral Data;* Japan Halon Company Ltd.: Tokyo, 1988; spectra 12 and 13.

⁽⁴⁴⁾ Kaesz, **H.** D.; Stafford, **S.** L.; Stone, **F.** G. *J. Am. Chem. SOC.* **1960,82,** 6232.

8 is obtained in the reaction flask as a nonvolatile gellike solid. The ¹¹⁹Sn NMR of the product shows a peak at 238 ppm which supports formation of **8.** The other spectral properties are similar to those listed earlier.

Insertion Reactions of 13 with Fluoroolefins. In a typical reaction, a slight excess of the fluoroolefin $(\sim 4.5 \text{ mmol})$ is added to pure CIN- $(SO_2CF_3)_2$ (\sim 4 mmol) contained in a 40-mL Pyrex reaction tube fitted with a ChemGlass Teflon needle valve at -196 °C. The reaction mixture is slowly allowed to warm to 25 °C and then heated to 65-70 °C for 12-21 h. The products are separated by trap-to-trap distillation.

Properties of CH₂CICHFN(SO₂CF₃)₂ (14). This compound is isolated as a colorless liquid in 73% yield in a trap held at -20 °C when CH₂=CHF is **used** as the olefin. Spectral data obtained are as follows. IR (gas) (cm-1): 3029 **w,** 2986 **vw,** 1451 **s,** 1421 8,1391 ms, 1341 ms, 1298 mw, 1225 vs br, 1152 **s,** 1123 vs br, 1080 **VI,** 972 **m,** 953 **s,** 891 **s,** 794 w, 767 **w,** 725 w, 685 **ms,** 620 vs, 597 **s,** 582 m, 483 mw. NMR [CH2A-C1CHBFN(S02CF3D)2]: IH, 6 6.23 (B, dt), 4.1 (A, **m);** I9F, *b* -7 1.7 (D, d), -137.6 (C, br s). $J_{AB} = 6.4$ Hz, $J_{AC} = 43.6$ Hz, $J_{CD} = 5.2$ Hz. MS CI $[m/e$ (species) intensity]: 362 (M⁺ + 1) 0.8; 342 (M⁺ - F) 1.6; 296 $(M^+ - CH_2ClO)$ 8.7; 282 $(H_2N(SO_2CF_3)_2^+)$ 53.0; 272 $(M^+ - CF_4-H)$ 15.0; 149 $(H_2NSO_2CF_3^+)$ 6.1; 133 $(CF_3SO_2^+)$ 32.6; 81 (CH_2ClCHF^+) 29.4; 69 (CF₃⁺) 100.

Properties of CHFCICF₂N(SO₂CF₃)₂ (15). This compound is isolated as a colorless liquid in 66% yield in a trap held at -20 $^{\circ}$ C using CHF=CF₂ as the olefin. Spectral data obtained are as follows. IR (gas) $(cm⁻¹):$ 1457 **s,** 1437 m, 1406vs, 1370vs, 1327 **s,** 1232vs, 1132vs, 1082vs, 901 vs, 856 **s,** 822 m, 802 m, 788 **s,** 770 w, 732 **s,** 704 **s,** 646 **s,** 600 vs, 572 vs, 485 **s.** NMR **[CHAFBClCF2CN(S02CF3D)2]:** IH, *6* 6.31 (A, dm); I9F, *6* -69.6 (C, br), -72.9 (D, **s),** -154.5 (B, dm). *JAB* = 47.1 Hz. MS CI $[m/e \text{ (species) intensity]}$: $398 \text{ (M+ + 1) } 28.1$; $328 \text{ (M+ - CF₃) } 2.9$; $282 \text{ (H}_2\text{N}(\text{SO}_2\text{CF}_3)_2^{\text{+}})$ 13.9; 264 (M⁺ - CF₃SO₂) 0.8; 246 (CF₃SO₂- $NCF₂CHCl⁺ + 1)$ 1.2; 150 $(H₂NSO₂CF₃⁺ + 1)$ 5.9; 133 $(CF₃SO₂⁺)$ 11.7; 119 $(C_2F_5^+)$ 23.0; 117 (CF_2CHFCI^+) 82.4; 69 (CF_3^+) 100.

Properties of CH₂CICF₂N(SO₂CF₃)₂ (16). This compound is isolated as a colorless liquid in 64% yield in a trap held at -20 °C using $CH_2=CF_2$ as the olefin. Spectral data obtained are as follows. IR (gas) $(cm⁻¹)$: 1456 **s,** 1429 **s,** 1401 m, 1368 m, 1338 **m,** 1325 **m,** 1225 **s,** 1127 **s,** 1048 **m,** 975 w, 955 **m,** 881 **m,** 843 **w,** 813 w, 790 w, 771 w, 732 **s,** 744 w, 688 w, 671 w, 643 **m,** 628 **s,** 601 **s,** 572 **s,** 505 vs, 487 vs, 474 vs, 465 vs. NMR **[CH2ACICF2BN(S02CF3C)2]:** IH, 6 4.21 (A, t); I9F, 6 -69.6 (B, br), -71.8 (C, t). $J_{AB} = 11.29$ Hz, $J_{BC} = 7.5$ Hz. MS CI [m/e (species) intensity]: 380 (M⁺ + 1) 1.8; 296 (CH₃N(SO₂CF₃)₂⁺ + 1) 12.9; 282 $(H_2N(SO_2CF_3)_2^+)$ 100; 266 $(H_2N(SO_2CF_3)SOCF_3^+)$ 2.7; 228 (M^+-F) $- SO₂CF₃ + 1) 22.9$; 212 (M⁺ - Cl - SO₂CF₃ + 1) 4.1; 192 (M⁺ - Cl $- F - SO_2CF_3$) 5.3; 174 (M⁺ - Cl - 2F - SO₂CF₃ + 1) 14.6; 150 (H₂-NSO₂CF₃⁺ + 1) 61.9; 133 (CF₃SO₂⁺) 54.2; 112 (CHCICF₂N⁺) 29.8; 99 $(CH_2ClCF_2^+)$ 42.6; 69 (CF₃⁺) 100.

Properties of $CF_2CICF_2N(SO_2CF_3)_2$ (17). This compound is isolated as a colorless liquid in 70% yield in a trap held at -20 °C having passed a trap at -5 °C when $CF_2=CF_2$ is the olefin. Spectral data obtained are as follows. IR (gas) (cm-I): 1427 **s,** 1386 **s,** 1279 vs, 1242 vs, 1194 m, 1143 **s,** 1126 **s,** 1088 vs, 946 **s,** 800 w, 786 w, 771 w, 730 w, 652 w, 603 m, 574 w, 565 w, 540 vw, 498 w. NMR $[CF₂^ACICF₂^BN(SO₂CF₃^C)₂]:$ l9F, 6 -51.1 (B, m), -72.6 (C, m), -77.9 (A, m). MS CI *[m/e* (species) intensity]: 416 (M⁺ + 1) 9.3; 350 (CF₃N(SO₂CF₃)₂⁺ + 1) 49.2; 330 + 1) 5.0; 133 (CF_3SO_2 ⁺) 19.7; 119 (C_2F_5 ⁺) 17.31; 69 (CF_3 ⁺) 100. Anal. Calcd for C₄ClF₁₀NO₄S₂: C, 11.54; F, 45.8. Found: C, 11.17; F, 47.2. $(CF_2N(SO_2CF_3)_2^+)$ 1.1; 280 $(N(SO_2CF_3)_2^+)$ 10.3; 150 $(H_2NSO_2CF_3^+)$

Properties of $CF_3CHN(SO_2CF_3)_2CH_2Cl$ (18) and $CF_3CHClCH_2N (SO_2CF_3)_2$ (19). An inseparable mixture of compounds 18 and 19 in the ratio of 1.2:1 is isolated as a nonvolatile colorless liquid in 84% yield when $CF₃CH=CH₂$ is the olefin. Spectral data obtained for the isomeric mixture are as follows. IR (gas) (cm^{-1}) : 3027 vw, 2861 vw, 1457 vs, 1430s, 1398s, 1337s, 1232vsbr, 1196sh, 1133vs,1090s,1038m,989 m, 952 ms, 887 m, 877 m, 824 **s,** 791 mw, 769 w, 726 m, 685 vw, 647 mw, 610 vs, 587 m, 572 **ms,** 507 ms, 450 vw, 402 w. NMR **[CF3ACHBN(S02CF3C)2CH2DC1** and **CF3ECHFC1CH~GN(S0~CF3H)2]** : 'H, 4.93 (B, F, m, lH), 4.38 (D, G, m, 2H); 19F, two sets of peaks in the ratio of 2:1 are observed at δ -71.6 and -73.4 and δ -74.4 and -78.0, assigned as H and C and as E and A, respectively. MS CI *[m/e* (species) intensity]: 412 (M⁺ + 1) 2.3; 341 (M⁺ - CF₃H) 0.4; 294 (M⁺ - CF₃-14.1; 131 $(M^+ - N(SO_2CF_3)_2)$ 76.9; 69 (CF_3^+) 100. Anal. Calcd for C₅H₃ClF₉NO₄S₂: C, 14.60; H, 0.73; F, 41.6; N, 3.4. Found: C, 14.56; H, 0.79; F, 41.2; N, 3.5. CHCl) 12.1; 230 (M^+ – CF₃SO₂CH₂Cl + 1) 29.6; 194 (CF₃CClNSO₂⁺)

the **properties of CF₂CF₂CF₂CF₂NCFCICF₂N(SO₂CF₃)₂ (20) and CF₂CF₂-**

organic Chemistry, Vol. 33, N
 **CF₂CF₂CF₂CF₂NCFCICF₂N(SO₂C₅)₂]CF₂CI(21). A colorless

21 in the ratio of 1:1.5 is obtaine** 3287
 CF_2CF_2 -
 T_1
 H_2
 H_3
 H_4
 H_5
 F_2CF_2 -
 F_2CF_2 -CF₂CF₂NCFIN(SO₂CF₃)₂]CF₂CI(21). A colorless mixture of nonvolatile

isomers 20 and 21 in the ratio of 1:1.5 is obtained in 72% yield upon
removal of all volatile materials from the reaction of $CF_2CF_2CF_2-$
 $CF_2NCF=CF_2$ and 13. The spectral data obtained for the mixture are removal of all volatile materials from the reaction of $CF₂CF₂CF₂$ -

 $CF₂NCF=CF₂$ and 13. The spectral data obtained for the mixture are as follows. IR (neat liquid) (cm-I): 1455 **s,** 1414 **m,** 1399 **m,** 1380 sh, 1342 **s,** 1227 vs br, 1185 vs, 1131 vs, 1095 **ms,** 1045 **ms,** 1015 mw, 974 vs, 947 **m,** 929 m, 870 ms, 845 **m,** 786 mw, 778 mw, 769 w, 71 1 w, 687 vw, 642 m, 61 1 **s,** 574 **ms,** 501 **ms.** Inorganic Chemistry, Vol. 33, No. 15, 1994 3287

es of CF₂CF₂CF₂CF₂NCFCICF₂N(SO₂CF₃)₂ (20) and CF₂CF₂-

IF[N(SO₂CF₃)₂](CF₂CI (21). A colorless mixture of nonvolatile

and 21 in the ratio of 1:1

NMR $\sqrt{\frac{1}{C}}$ F₂^ACF₂^{BC}CF₂^ANCF^DClCF₂^EN(SO₂CF₃^F)₂ and CF₂^A-

CF2GHCF2GHCF2ANCF1[N(S02CF3J)2]CF2KC1]: I9F, 6 -70.2 to -78.0 (E, F, J, K complex m, 8 F), -83.1 to -97.9 (A, A_2B_2 m, 4 F), -104.3 and -105.7 (D, I, m, 1 F), -128.9 to -138 (BC, GH, AB m, 4 F). J_{BC} $= 245 \pm 3$ Hz. MS CI [m/e (species) intensity]: $459(M^+ - F - SO_2CF_3)$ + 1) 0.5; 405 (M⁺ - 2F - Cl - SO₂CF₃ + 1) 0.9; 330 (M⁺ - N(SO₂CF₃)₂) 74.3; 295 (M⁺ – Cl – N(SO₂CF₃)₂) 22.6; 282 (HN(SO₂CF₃)₂⁺ + 1) 9.3; 276 ($C_6F_{10}N^+$) 34.0; 242 ($C_4F_8NCO^+$) 26.4; 196 ($C_4F_7N^+ + 1$) 23.3; 195 (C₄F₇N⁺) 12.8; 176 (C₄F₆N⁺) 30.4; 150 (H₂NSO₂CF₃⁺ + 1) 23.6; $135(C_2F_4Cl^+)$ 24.4; 133 (CF₃SO₂⁺) 11.9; 119 (C₂F₅⁺) 9.6; 114 (C₂F₄N⁺) 7.3; 100 (C₂F₄+) 29.4; 85 (CF₂Cl⁺) 63.6; 69 (CF₃+) 100. Anal. Calcd for $C_8CIF_{17}NO_4S_2$: C, 15.74; F, 52.9; N, 4.60. Found: C, 15.44; F, 52.0; N, 4.71. I $T_{CFA}^{T}NCF^{I}[N(SO_{2}CF_{3}^{3})_{2}]CF_{2}KCl]$: ¹⁹

iomplex m, 8 F), -83.1 to -97.9 (A, A₂1

D, I, m, 1 F), -128.9 to -138 (BC, GH,

z. MS CI [m/e (species) intensity]: 459

(M⁺ - 2F - Cl - SO₂CF₃+1) 0.9; 330 (N

+ - Cl

Properties of $\hat{C}F_2CF_2OCF_2CF_2NCFCICF_2N(SO_2CF_3)$ ₂ (22) and

CF~CF2OCF2CF2NCF[N(SO~CF~)2)CF2CI (23). Compounds 22 and 23 are obtained as a colorless mixture of nonvolatile isomers in 80% yield in the ratio 1: 1.3 upon removal of all volatile materials from the reaction

product of $CF_2CF_2OCF_2CF_2NCF=CF_2$ and 13. The spectral data obtained for the mixture are as follows. IR (neat liquid) (cm^{-1}) : 1460 **mw,1439sh,1416vs,1376s,1333ms, 1305s,1284s,1228vs,br,1187** vs, 1138 vs, 1088 vs, 1028 **ms,** 926 **s,** 833 m, 786 mw, 767 m, 734 mw, are obtained as a colorless mixture of non
in the ratio 1:1.3 upon removal of all volatil
product of $CF_2CF_2OCF_2CF_2NCF = CF_2$
obtained for the mixture are as follows. Il
mw, 1439 sh, 1416 vs, 1376 s, 1333 ms, 130
vs, 1138 vs

691 m, 677 m, 666 m, 622 ms, 570 m, 489 ms. NMR [CF₂ACF₂B-

OCF₂BCF₂ANCF^CCICF₂PN(SO₂CF₃E)₂ and CF₂FCF₂GOCF₂GCF₂FN- $CF^{H}[N(SO_{2}CF_{3}^{I})_{2}]CF_{2}^{J}Cl$: ¹⁹F, δ -70.5 to -78.2 (D, E, I, J, complex **m,** 8 F), -83.3 to-94.4 (A, B,F,G, complexm, 4 F),-100.8 and-102.4 (C, H, m, 1 F). MS CI $[m/e$ (species) intensity]: 346 $(M⁺ - N(SO₂ CF_3$)₂) 12.7; 311 (M⁺ - Cl - N(SO₂CF₃)₂) 41.7; 292 (M⁺ - Cl - F - $N(SO_2CF_3)_2)$ 61.4; 280 ($N(SO_2CF_3)_2^+$) 2.0; 258 ($C_4F_8ONCO^+$) 4.0; 242 (C₄F₈NCO⁺) 3.7; 192 (C₄F₆NO⁺) 26.1; 176 (C₄F₆N⁺) 7.7; 164 $(C_3F_6N^+)$ 15.5; 145 $(C_3F_5N^+)$ 60.3; 133 $(CF_3SO_2^+)$ 3.0; 119 $(C_2F_5^+)$ 78.1; 114 (C₂F₄N⁺) 14.4; 100 (C₂F₄⁺) 41.6; 85 (CF₂Cl⁺) 36.8; 69 (CF₃⁺) 100. Anal. Calcd for $C_8CIF_{17}NO_5S_2$: C, 15.33; F, 51.5. Found: C, 15.10; F, 50.9.

Insertions of ClCN into the N-CI bond of 13. Into a 40-mL thickwalled Pyrex glass tube fitted with a ChemGlass Teflon needle valve are condensed $13(\sim 3$ mmol) and ClCN (~ 5 mmol) at -196 °C. The reaction mixture is allowed to warm slowly to 25 $^{\circ}$ C and then heated at 65-70 °C for 14-25 h. The products are then separated by trap-to-trap distillation.

Properties of $Cl_2C=NN(SO_2CF_3)_2$ (24). This compound is isolated as a colorless liquid in 75% yield in a trap cooled to -20 °C. The spectral data obtained for this compound are as follows. IR (neat liquid) (cm^{-1}) : 1572 m, 1456 **s,** 1436 **m,** 1335 w, 1225 vs, 1121 vs, 896 **m,** 776 vw, 732 w, 634 m, 607 s, 577 s, 569 m. NMR [CCl₂=NN(SO₂CF₃^A)₂]: ¹⁹F, δ -69.4 (A, s). MS CI [m/e (species) intensity]: 341 (M⁺ - Cl) 0.4; 313 $(M^+ - SO_2 + 1)$ 9.8; 277 $(M^+ - Cl - SO_2 + 1)$ 18.1; 243 $(CF_3SO_2$ - $NN=CCl_2+)$ 0.6; 227 (CF₃SONN= CCl_2+) 4.69; 175 (H₂NCNSOCF₃+) 58.8; 150 $(H_2NSO_2CF_3^+ + 1)$ 73; 96 $(N=CCl_2^+)$ 40.1; 69 (CF_3^+) 100. Anal. Calcd for $C_3Cl_2F_6NO_4S_2$: Cl, 18.62; F, 30.2; S, 17.02. Found: C1, 18.09; F, 29.7; S, 17.42.

Reaction of 13 with R_3 SnCl $(R = CH_3, C_4H_9)$ or $(CH_3)_3$ SiCl. In a typical reaction, 13 (\sim 1.5 mmol) is transferred at -196 °C, via vacuum, *to* an equimolar amount of trialkylsilyl/stannyl chloride in 15 mL of trichlorofluoromethane taken up into a round-bottomed flask fitted with a ChemGlass Teflon stopcock via a B-14 ground joint. The reaction mixture is allowed to warm slowly to 25 °C over a period of \sim 2 h., with stirring, during which the reaction mixture turns pale yellow. Removal of volatile materials leaves behind **8,** 9, or 11 in essentially quantitative yield. Spectral properties are similar to those reported earlier. Attempts to react triphenyltin(1V) chloride results in the formation of a mixture of products.

Reaction of 13 with CFCI\$3(O)CI. This reaction is carried out **by** a similar procedure. The separation of products **by** trap-to-trap distillation gave CFC12S(O)N(S02CF3)2 **(25)** as a pale yellowish liquid in **47%** yield in a trap at -10 °C. Spectral properties of 25 are as follows. IR (neat liquid) (cm-I): **1457** vs, **1437 s, 1341** mw, **1225** vs, **1134vs, 1058** w, **995 s, 875** sh, **859 ms, 795** mw, **770 vw, 760** mw, **602** vs, **581 ms, 572 ms, 533sh, 511 s, 446 mw. NMR [CF^Cl₂S(O)N(SO₂CF₃B)₂]: ¹⁹F, δ-29.1** (A, sept), -69.1 (B, d). $J_{AB} = 7.5$ Hz. MS CI $[m/e$ (species) intensity]: **282** (HN(SOzCFs)z++ **1) 2.2; 176** (CF2S02NSO+) **8.2; 150** (HaNS02 CF_3^+ + 1) 4.7; 133 $(CF_3SO_2^+)$ 23.5; 128 $(CFCINSO^+)$ 35.2; 114 $(CF_2-$ **SO2+) 16.9; 101** (CFC12+) **54.2; 69** (CF3) **100.**

Acknowledgment. A.V., **Y.Y.Z,** R.L.K., and J.M.S. are grateful to the National Science Foundation (Grant **CHE-9003509)** and the Air Force Office of Scientific Research (Grant 91-0189) for the support of this research. We are thankful to Dr. Fred E. Behr **(3M** Co.), Dr. F. Aubke **(UBC,** Canada), and **Dr.** Takasi Abe (Japan) for the generous gifts of $LiN(SO_2CF_3)_2$, $S_2O_6F_2$, and perfluorovinyl amines, respectively. Dr. Gary Knerr is also acknowledged for obtaining the mass spectral data.